Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Platelets ; 35(1): 2313359, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38353233

RESUMO

Cyclic guanosine monophosphate (cGMP) is a second messenger produced by the NO-sensitive guanylyl cyclase (NO-GC). The NO-GC/cGMP pathway in platelets has been extensively studied. However, its role in regulating the biomechanical properties of platelets has not yet been addressed and remains unknown. We therefore investigated the stiffness of living platelets after treatment with the NO-GC stimulator riociguat or the NO-GC activator cinaciguat using scanning ion conductance microscopy (SICM). Stimulation of human and murine platelets with cGMP-modulating drugs decreased cellular stiffness and downregulated P-selectin, a marker for platelet activation. We also quantified changes in platelet shape using deep learning-based platelet morphometry, finding that platelets become more circular upon treatment with cGMP-modulating drugs. To test for clinical applicability of NO-GC stimulators in the context of increased thrombogenicity risk, we investigated the effect of riociguat on platelets from human immunodeficiency virus (HIV)-positive patients taking abacavir sulfate (ABC)-containing regimens. Our results corroborate a functional role of the NO-GC/cGMP pathway in platelet biomechanics, indicating that biomechanical properties such as stiffness or shape could be used as novel biomarkers in clinical research.


Increased platelet activation and development of thrombosis has been linked to a dysfunctional NO-GC/cGMP signaling pathway. How this pathway affects platelet stiffness, however, has not been studied yet. For the first time, we used novel microscopy techniques to investigate stiffness and shape of platelets in human and murine blood samples treated with cGMP modifying drugs. Stiffness contains information about biomechanical properties of the cytoskeleton, and shape quantifies the spreading behavior of platelets. We showed that the NO-GC/cGMP signaling pathway affects platelet stiffness, shape, and activation in human and murine blood. HIV-positive patients are often treated with medication that may disrupt the NO-GC/cGMP signaling pathway, leading to increased cardiovascular risk. We showed that treatment with cGMP-modifying drugs altered platelet shape and aggregation in blood from HIV-negative volunteers but not from HIV-positive patients treated with medication. Our study suggests that platelet stiffness and shape can be biomarkers for estimating cardiovascular risk.


Assuntos
Plaquetas , Transdução de Sinais , Humanos , Camundongos , Animais , Fenômenos Biomecânicos , Plaquetas/metabolismo , Guanilato Ciclase/metabolismo , Guanilato Ciclase/farmacologia , Ativação Plaquetária , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Óxido Nítrico/metabolismo , Agregação Plaquetária
2.
Nanoscale ; 14(22): 8192-8199, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35621412

RESUMO

Platelets are small blood cells involved in hemostasis, wound healing, and immune response. After adhesion and spreading, platelets can migrate at sites of injury inducing an early immune response to inflammation or infection. Platelet migration requires fibrinogen-integrin binding and fibrinogen depletion from the substrate inducing a self-generated ligand gradient guiding the direction of migration. This type of cellular motion is referred to as haptotactic migration. The underlying mechanisms of haptotactic platelet migration have just recently been discovered, but the connection to platelet mechanics has remained unknown yet. Using scanning ion conductance microscopy (SICM), we investigated the three-dimensional morphology and mechanics of platelets during haptotactic migration for the first time. Migrating platelets showed a polarized, anisotropic shape oriented in the direction of migration. This polarization goes hand in hand with a characteristic subcellular stiffness distribution showing a region of increased stiffness at the leading edge. Moreover, the mechanical properties of the leading edge revealed a highly dynamic stiffening and softening process with rapid changes of the elastic modulus by a factor of up to 5× per minute. Inhibition of actin polymerization stopped the dynamic stiffening and softening process and halted the migration. By combining SICM with confocal fluorescence microscopy, we found that the increased stiffness and mechanical dynamics at the leading edge coincided with an increased volumetric F-actin density. Our data provide a connection between platelet mechanics and the cytoskeletal contribution to the migration process of platelets.


Assuntos
Plaquetas , Movimento Celular , Plaquetas/fisiologia , Fibrinogênio/metabolismo , Humanos , Microscopia Eletrônica de Varredura
3.
Cells ; 10(11)2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34831155

RESUMO

Platelets are functionally versatile blood cells involved in thrombosis, hemostasis, atherosclerosis, and immune response. Platelet interaction with the immediate microenvironment in blood, vasculature, and tissues alters platelet morphology. The quantification of platelet morphodynamics by geometrical parameters (morphometry) can provide important insights into how platelets sense and respond to stimulatory cues in their vicinity. However, the extraction of platelet shapes from phase contrast microscopy images by conventional image processing is difficult. Here, we used a convolutional neural network (CNN) to develop a deep-learning-based approach for the unbiased extraction of information on platelet morphodynamics by phase contrast microscopy. We then investigated the effect of normal and oxidized low-density lipoproteins (LDL, oxLDL) on platelet morphodynamics, spreading, and haptotactic migration. Exposure of platelets to oxLDL led to a decreased spreading area and rate on fibrinogen, accompanied by increased formation of filopodia and impaired formation of lamellipodia. Haptotactic platelet migration was affected by both LDL and oxLDL in terms of decreased migration velocity and reduced directional persistence. Our results demonstrate the use of deep learning in investigating platelet morphodynamics and reveal differential effects of LDL and oxLDL on platelet morphology and platelet-matrix interaction.


Assuntos
Plaquetas/citologia , Movimento Celular , Forma Celular , Aprendizado Profundo , Lipoproteínas LDL/farmacologia , Movimento Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Tato
4.
Biomed Eng Online ; 20(1): 102, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641889

RESUMO

BACKGROUND: Retinal degenerative diseases, e.g., retinitis pigmentosa, cause a severe decline of the visual function up to blindness. Treatment still remains difficult; however, implantation of retinal prostheses can help restoring vision. In this study, the biocompatibility and surgical feasibility of a newly developed epiretinal stimulator (OPTO-EPIRET) was investigated. The previously developed implant was extended by an integrated circuit-based optical capturing, which will enable the immediate conversion of the visual field into stimulation patterns to stimulate retinal ganglion cells. RESULTS: The biocompatibility of the OPTO-EPIRET was investigated in vitro using the two different cell lines L-929 and R28. Direct and indirect contact were analyzed in terms of cell proliferation, cell viability, and gene expression. The surgical feasibility was initially tested by implanting the OPTO-EPIRET in cadaveric rabbit eyes. Afterwards, inactive devices were implanted in six rabbits for feasibility and biocompatibility testings in vivo. In follow-up controls (1-12 weeks post-surgery), the eyes were examined using fundoscopy and optical coherence tomography. After finalization, histological examination was performed to analyze the retinal structure. Regarding the in vitro biocompatibility, no significant influence on cell viability was detected (L929: < 1.3% dead cells; R-28: < 0.8% dead cells). The surgery, which comprised phacoemulsification, vitrectomy, and implantation of the OPTO-EPIRET through a 9-10 mm corneal incision, was successfully established. The implant was fixated with a retinal tack. Vitreal hemorrhage or retinal tearing occurred as main adverse effects. Transitional corneal edema caused difficulties in post-surgical imaging. CONCLUSIONS: The OPTO-EPIRET stimulator showed a good biocompatibility profile in vitro. Furthermore, the implantation surgery was shown to be feasible. However, further design optimization steps are necessary to avoid intra- and postoperative complications. Overall, the OPTO-EPIRET will allow for a wide visual field and good visual acuity due to a high density of electrodes in the central retina.


Assuntos
Retinite Pigmentosa , Próteses Visuais , Animais , Eletrodos Implantados , Implantação de Prótese , Coelhos , Retina , Retinite Pigmentosa/cirurgia
5.
Pharmaceutics ; 12(9)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899549

RESUMO

Due to fast nasal mucociliary clearance, only the dissolved drug content can effectively permeate the mucosa and be pharmaceutically active after intranasal application of suspensions. Therefore, the aim of this study was to increase the budesonide concentration in solution of a nasal spray formulation. Budesonide, a highly water-insoluble corticosteroid, was successfully solubilized using a micellar formulation comprising escin, propylene glycol and dexpanthenol in an aqueous buffered environment ("Budesolv"). A formulation based on this micellar system was well-tolerated in the nasal cavity as shown in a good laboratory practice (GLP) local tolerance study in rabbits. Ex vivo permeation studies into porcine nasal mucosa revealed a faster and more efficient absorption. Budesolv with 300 µg/mL solubilized budesonide resulted in a budesonide concentration of 42 µg/g tissue after only 15 min incubation. In comparison, incubation with the marketed product Rhinocort® aqua 64 (1.28 mg/mL budesonide as suspension) led to 15 µg/g tissue. The in vivo tumor-necrosis-factor (TNF)-α secretion in an acute lung inflammation mouse model was significantly reduced (p < 0.001) following a prophylactic treatment with Budesolv compared to Rhinocort® aqua 64. Successful treatment 15 min after the challenge was only possible with Budesolv (40% reduction of TNF-α, p = 0.0012) suggesting a faster onset of action. The data reveal that solubilization based on saponin micelles presents an opportunity for the development of products containing hardly soluble substances that result in a faster onset and a better topical treatment effect.

6.
Phys Chem Chem Phys ; 20(23): 15764-15774, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29868669

RESUMO

We monitored adsorption of water on a well-defined Fe3O4(111) film surface at different temperatures as a function of coverage using infrared reflection-absorption spectroscopy, temperature programmed desorption, and single crystal adsorption calorimetry. Additionally, density functional theory was employed using a Fe3O4(111)-(2 × 2) slab model to generate 15 energy minimum structures for various coverages. Corresponding vibrational properties of the adsorbed water species were also computed. The results show that water molecules readily dissociate on regular surface Fetet1-O ion pairs to form "monomers", i.e., terminal Fe-OH and surface OH groups. Further water molecules adsorb on the hydroxyl covered surface non-dissociatively and form "dimers" and larger oligomers, which ultimately assemble into an ordered (2 × 2) hydrogen-bonded network structure with increasing coverage prior to the formation of a solid water film.

7.
Sci Rep ; 7(1): 4810, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684746

RESUMO

Platelets are small anucleate blood cells involved in haemostasis. Platelet activation, caused by agonists such as thrombin or by contact with the extracellular matrix, leads to platelet adhesion, aggregation, and coagulation. Activated platelets undergo shape changes, adhere, and spread at the site of injury to form a blood clot. We investigated the morphology and morphological dynamics of human platelets after complete spreading using fast scanning ion conductance microscopy (SICM). In contrast to unstimulated platelets, thrombin-stimulated platelets showed increased morphological activity after spreading and exhibited dynamic morphological changes in the form of wave-like movements of the lamellipodium and dynamic protrusions on the platelet body. The increase in morphological activity was dependent on thrombin concentration. No increase in activity was observed following exposure to other activation agonists or during contact-induced activation. Inhibition of actin polymerization and inhibition of dynein significantly decreased the activity of thrombin-stimulated platelets. Our data suggest that these morphological dynamics after spreading are thrombin-specific and might play a role in coagulation and blood clot formation.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Pseudópodes/efeitos dos fármacos , Trombina/farmacologia , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/antagonistas & inibidores , Actinas/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Difosfato de Adenosina/farmacologia , Ácido Araquidônico/farmacologia , Compostos de Benzil/farmacologia , Plaquetas/metabolismo , Plaquetas/ultraestrutura , Citocalasina D/farmacologia , Dineínas/antagonistas & inibidores , Dineínas/metabolismo , Epinefrina/farmacologia , Humanos , Microscopia Eletroquímica de Varredura , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Ativação Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Polimerização/efeitos dos fármacos , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura , Quinazolinonas/farmacologia
8.
Phys Chem Chem Phys ; 19(6): 4231-4242, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28116388

RESUMO

Room temperature adsorption of carbon dioxide (CO2) on monocrystalline CaO(001) thin films grown on a Mo(001) substrate was studied by infrared reflection-absorption spectroscopy (IRAS) and quantum chemical calculations. For comparison, CO2 adsorption was examined on poorly ordered, nanoparticulate CaO films prepared on Ru(0001). For both systems, CO2 readily adsorbs on the clean CaO surface. However, additional bands were observable on the CaO/Ru(0001) films compared with CaO/Mo(001), because the stricter IRAS surface selection rules do not apply to adsorption on the disordered thin films grown on Ru(0001). Spectral evolution with increasing exposure of the IRA bands suggested the presence of several adsorption sites which are consecutively populated by CO2. Density functional calculations showed that CO2 adsorption occurs as monodentate surface carbonate (CO32-) species at monatomic step sites and other low-coordinated sites, followed by formation of carbonates on terraces, which dominate at increasing CO2 exposure. To explain the coverage-dependent IRAS results, we propose CO2 surface islanding from the onset, most likely in the form of pairs and other chain-like species, which were calculated as thermodynamically favorable. The calculated adsorption energy for isolated CO2 on the terrace sites (184 ± 10 kJ mol-1) is larger than the adsorption energy obtained by temperature programmed desorption (∼120-140 kJ mol-1) and heat of adsorption taken from microcalorimetry measurements at low coverage (∼125 kJ mol-1). However, the calculated adsorption energies become less favorable when carbonate chains intersect on CaO terraces, forming kinks. Furthermore, our assignments of the initial stages of CO2 adsorption are consistent with the observed coverage effect on the CO2 adsorption energy measured by microcalorimetry and the IRAS results.

9.
Platelets ; 27(6): 541-6, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27063564

RESUMO

Many conventional microscopy techniques for investigating platelet morphology such as electron or fluorescence microscopy require highly invasive treatment of the platelets such as fixation, drying and metal coating or staining. Here, we present two unique but entirely different microscopy techniques for direct morphology analysis of live, unstained platelets: scanning ion conductance microscopy (SICM) and robotic dark-field microscopy (RDM). We demonstrate that both techniques allow for a quantitative evaluation of the morphological features of live adherent platelets. We show that their morphology can be quantified by both techniques using the same geometric parameters and therefore can be directly compared. By imaging the same identical platelets subsequently with SICM and RDM, we found that area, perimeter and circularity of the platelets are directly correlated between SICM and dark-field microscopy (DM), while the fractal dimension (FD) differed between the two microscopy techniques. We show that SICM and RDM are both valuable tools for the ex vivo investigation of the morphology of live platelets, which might contribute to new insights into the physiological and pathophysiological role of platelet spreading.


Assuntos
Plaquetas/citologia , Plaquetas/ultraestrutura , Microscopia/métodos , Forma Celular , Tamanho Celular , Humanos , Microscopia/instrumentação
10.
Stem Cells Int ; 2016: 4148093, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26839560

RESUMO

Efficient ex vivo expansion of hematopoietic stem cells with a concomitant preservation of stemness and self-renewal potential is still an unresolved ambition. Increased numbers of methods approaching this issue using three-dimensional (3D) cultures were reported. Here, we describe a simplified 3D hanging drop model for the coculture of cord blood-derived CD34(+) hematopoietic stem and progenitor cells (HSPCs) with bone marrow-derived mesenchymal stromal cells (MSCs). When seeded as a mixed cell suspension, MSCs segregated into tight spheroids. Despite the high expression of niche-specific extracellular matrix components by spheroid-forming MSCs, HSPCs did not migrate into the spheroids in the initial phase of coculture, indicating strong homotypic interactions of MSCs. After one week, however, HSPC attachment increased considerably, leading to spheroid collapse as demonstrated by electron microscopy and immunofluorescence staining. In terms of HSPC proliferation, the conventional 2D coculture system was superior to the hanging drop model. Furthermore, expansion of primitive hematopoietic progenitors was more favored in 2D than in 3D, as analyzed in colony-forming assays. Conclusively, our data demonstrate that MSCs, when arranged with a spread (monolayer) shape, exhibit better HSPC supportive qualities than spheroid-forming MSCs. Therefore, 3D systems are not necessarily superior to traditional 2D culture in this regard.

11.
PLoS One ; 10(6): e0128794, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26053018

RESUMO

BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.


Assuntos
Carragenina/administração & dosagem , Carragenina/uso terapêutico , Vírus da Influenza A/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Zanamivir/administração & dosagem , Zanamivir/uso terapêutico , Administração Intranasal , Animais , Antivirais/uso terapêutico , Carragenina/farmacologia , Modelos Animais de Doenças , Cães , Humanos , Vírus da Influenza A Subtipo H7N7/efeitos dos fármacos , Concentração Inibidora 50 , Células Madin Darby de Rim Canino , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Resultado do Tratamento , Zanamivir/farmacologia
12.
Phys Rev Lett ; 114(21): 216101, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26066445

RESUMO

In a recent paper [A. J. Window et al., Phys. Rev. Lett. 107, 016105 (2011)], it was proposed that V_{2}O_{3}(0001) is terminated by the so-called O_{3} termination, a reconstruction with a terminating distorted hexagonal oxygen layer. We show that the surface is terminated by vanadyl (V═O) groups instead. This conclusion is based on quantitative low-energy electron diffraction combined with scanning tunneling microscopy, fast atom scattering, and density functional theory employing the Heyd-Scuseria-Ernzerhof functional. New insights into the subsurface sensitivity of ion beam triangulation show that results previously interpreted in favor of the O_{3} termination are reconcilable with vanadyl termination as well.

13.
Langmuir ; 31(24): 6807-13, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26011471

RESUMO

Atomic force microscopy (AFM) and scanning ion conductance microscopy (SICM) are excellent and commonly used techniques for imaging the topography of living cells with high resolution. We present a direct comparison of AFM and SICM for imaging microvilli, which are small features on the surface of living cells, and for imaging the shape of whole cells. The imaging quality on microvilli increased significantly after cell fixation for AFM, whereas for SICM it remained constant. The apparent shape of whole cells in the case of AFM depended on the imaging force, which deformed the cell. In the case of SICM, cell deformations were avoided, owing to the contact-free imaging mechanism. We estimated that the lateral resolution on living cells is limited by the cell's elastic modulus for AFM, while it is not for SICM. By long-term, time-lapse imaging of microvilli dynamics, we showed that the imaging quality decreased with time for AFM, while it remained constant for SICM.


Assuntos
Fibroblastos/citologia , Microscopia de Força Atômica , Microscopia de Varredura por Sonda , Animais , Sobrevivência Celular , Células Cultivadas , Eletrodos , Camundongos , Xenopus laevis
14.
PLoS One ; 10(4): e0122911, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875737

RESUMO

Carrageenan has been widely used as food additive for decades and therefore, an extended oral data set is available in the public domain. Less data are available for other routes of administration, especially intranasal administration. The current publication describes the non-clinical safety and toxicity of native (non-degraded) iota-carrageenan when applied intranasally or via inhalation. Intranasally applied iota-carrageenan is a topically applied, locally acting compound with no need of systemic bioavailability for the drug's action. Animal experiments included repeated dose local tolerance and toxicity studies with intranasally applied 0.12% iota-carrageenan for 7 or 28 days in New Zealand White rabbits and nebulized 0.12% iota-carrageenan administered to F344 rats for 7 days. Permeation studies revealed no penetration of iota-carrageenan across nasal mucosa, demonstrating that iota-carrageenan does not reach the blood stream. Consistent with this, no relevant toxic or secondary pharmacological effects due to systemic exposure were observed in the rabbit or rat repeated dose toxicity studies. Data do not provide any evidence for local intolerance or toxicity, when carrageenan is applied intranasally or by inhalation. No signs for immunogenicity or immunotoxicity have been observed in the in vivo studies. This is substantiated by in vitro assays showing no stimulation of a panel of pro-inflammatory cytokines by iota-carrageenan. In conclusion, 0.12% iota-carrageenan is safe for clinical use via intranasal application.


Assuntos
Administração por Inalação , Administração Intranasal/efeitos adversos , Carragenina/administração & dosagem , Mucosa Nasal/efeitos dos fármacos , Animais , Carragenina/efeitos adversos , Coelhos , Ratos
15.
Thromb Haemost ; 113(2): 305-11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25354786

RESUMO

Platelet activation plays a critical role in haemostasis and thrombosis. It is well-known that platelets generate contractile forces during activation. However, their mechanical material properties have rarely been investigated. Here, we use scanning ion conductance microscopy (SICM) to visualise morphological and mechanical properties of live human platelets at high spatial resolution. We found that their mean elastic modulus decreases during thrombin-induced activation by about a factor of two. We observed a similar softening of platelets during cytochalasin D-induced cytoskeleton depolymerisation. However, thrombin-induced temporal and spatial modulations of the elastic modulus were substantially different from cytochalasin D-mediated changes. We thereby provide new insights into the mechanics of haemostasis and establish SICM as a novel imaging platform for the ex vivo investigation of the mechanical properties of live platelets.


Assuntos
Plaquetas/fisiologia , Módulo de Elasticidade , Microscopia/métodos , Trombina/química , Citocalasina D/química , Citoesqueleto/metabolismo , Diagnóstico por Imagem , Hemostasia , Humanos , Íons , Ativação Plaquetária , Polimerização , Polímeros/química , Estresse Mecânico , Trombose/metabolismo
16.
Rev Sci Instrum ; 85(7): 073703, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25085142

RESUMO

The imaging speed of the wide-spread force mapping mode for quantitative mechanical measurements on soft samples in liquid with the atomic force microscope (AFM) is limited by the bandwidth of the z-scanner and viscous drag forces on the cantilever. Here, we applied high-speed, large scan-range atomic force microscopy and small cantilevers to increase the speed of force mapping by ≈10-100 times. This allowed resolving dynamic processes on living mouse embryonic fibroblasts. Cytoskeleton reorganization during cell locomotion, growth of individual cytoskeleton fibers, cell blebbing, and the formation of endocytic pits in the cell membrane were observed. Increasing the force curve rate from 2 to 300 Hz increased the measured apparent Young's modulus of the cells by about 10 times, which facilitated force mapping measurements at high speed.


Assuntos
Microscopia de Força Atômica/instrumentação , Microscopia de Força Atômica/métodos , Silicatos de Alumínio , Animais , Autoantígenos , Membrana Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Citoesqueleto/metabolismo , Módulo de Elasticidade , Endocitose/fisiologia , Desenho de Equipamento , Fibroblastos/citologia , Fibroblastos/fisiologia , Camundongos , Microscopia Eletrônica , Proteínas Mitocondriais , Proteínas Nucleares , Viscosidade
17.
Bioconjug Chem ; 25(7): 1213-22, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-24866260

RESUMO

We developed a versatile set of chemical labeling reagents which allow dye ligation to the C-terminus of a protein or a single internal cysteine and target purification in a simple two-step process. This simple process results in a fully 1:1 labeled conjugate suitable for all quantitative fluorescence spectroscopy and imaging experiments. We refer to a "generic labeling toolbox" because of the flexibility to choose one of many available dyes, spacers of different lengths and compositions which increase the target solubility, a variety of affinity purification tags, and different cleavage chemistries to release the 1:1 labeled proteins. Studying protein function in vitro or in the context of live cells and organisms is of vital importance in biological research. Although label free detection technologies gain increasing interest in molecular recognition science, fluorescence spectroscopy is still the most often used detection technique for assays and screens both in academic as well as in industrial groups. For generations, fluorescence spectroscopists have labeled their proteins of interest with small fluorescent dyes by random chemical linking on the proteins' exposed lysines and cysteines. Chemical reactions with a certain excess of activated esters or maleimides of longer wavelength dyes hardly ever result in quantitative labeling of the target protein. Most of the time, more than one exposed amino acid side chain reacts. This results in a mixture of dye-protein complexes of different labeling stoichiometries and labeling sites. Only mass spectrometry allows resolving the precise chemical composition of the conjugates. In "classical" ensemble averaging fluorescent experiments, these labeled proteins are still useful, and quantification of, e.g., ligand binding experiments, is achieved via knowledge of the overall protein concentration and a fluorescent signal change which is proportional to the amount of complex formed. With the development of fluorescence fluctuation analysis techniques working at single molecule resolution, like fluorescence correlation spectroscopy (FCS), fluorescence cross correlation spectroscopy (FCCS), fluorescence intensity diffusion analysis (FIDA), etc., it became important to work with homogeneously labeled target proteins. Each molecule participating in a binding equilibrium should be detectable when it freely fluctuates through the confocal focus of a microscope. The measured photon burst for each transition contains information about the size and the stoichiometry of a protein complex. Therefore, it is important to work with reagents that contain an exact number of tracers per protein at identical positions. The ideal fluorescent tracer-protein complex stoichiometry is 1:1. While genetic tags such as fluorescent proteins (FPs) are widely used to detect proteins, FPs have several limitations compared to chemical tags. For example, FPs cannot easily compete with organic dyes in the flexibility of modification and spectral range; moreover, FPs have disadvantages in brightness and photostability and are therefore not ideal for most biochemical single molecule studies. We present the synthesis of a series of exemplaric toolbox reagents and labeling results on three target proteins which were needed for high throughput screening experiments using fluorescence fluctuation analysis at single molecule resolution. On one target, Hu-antigen R (HuR), we demonstrated the activity of the 1:1 labeled protein in ribonucleic acid (RNA) binding, and the ease of resolving the stoichiometry of an RNA-HuR complex using the same dye on protein and RNA by Fluorescence Intensity Multiple Distribution Analysis (FIMDA) detection.


Assuntos
Cisteína/química , Proteínas ELAV/isolamento & purificação , Corantes Fluorescentes/química , Fragmentos de Peptídeos/química , RNA/metabolismo , Proteínas Recombinantes/química , Compostos de Enxofre/química , Cromatografia de Afinidade , Cromatografia Líquida de Alta Pressão , Cisteína/metabolismo , Proteínas ELAV/química , Proteínas ELAV/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Fragmentos de Peptídeos/metabolismo , RNA/química , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray
18.
PLoS One ; 9(1): e88186, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498254

RESUMO

Riboflavin/UVA-induced corneal collagen cross-linking has become an effective clinical application to treat keratoconus and other ectatic disorders of the cornea. Its beneficial effects are attributed to a marked stiffening of the unphysiologically weak stroma. Previous studies located the stiffening effect predominantly within the anterior cornea. In this study, we present an atomic force microscopy-derived analysis of the depth-dependent distribution of the Young's modulus with a depth resolution of 5 µm in 8 cross-linked porcine corneas and 8 contralateral controls. Sagittal cryosections were fabricated from every specimen and subjected to force mapping. The mean stromal depth of the zone with effective cross-linking was found to be 219 ± 67 µm. Within this cross-linked zone, the mean Young's modulus declined from 49 ± 18 kPa at the corneal surface to 46 ± 17 kPa, 33 ± 11 kPa, 17 ± 5 kPa, 10 ± 4 kPa and 10 ± 4 kPa at stromal depth intervals of 0-50 µm, 50-100 µm, 100-150 µm, 150-200 µm and 200-250 µm, respectively. This corresponded to a stiffening by a factor of 8.1 (corneal surface), 7.6 (0-50 µm), 5.4 (50-100 µm), 3.0 (100-150 µm), 1.6 (150-200 µm), and 1.5 (200-250 µm), when compared to the Young's modulus of the posterior 100 µm. The mean Young's modulus within the cross-linked zone was 20 ± 8 kPa (2.9-fold stiffening), while it was 11 ± 4 kPa (1.7-fold stiffening) for the entire stroma. Both values were significantly distinct from the mean Young's modulus obtained from the posterior 100 µm of the cross-linked corneas and from the contralateral controls. In conclusion, we were able to specify the depth-dependent distribution of the stiffening effect elicited by standard collagen cross-linking in porcine corneas. Apart from determining the depth of the zone with effective corneal cross-linking, we also developed a method that allows for atomic force microscopy-based measurements of gradients of Young's modulus in soft tissues in general.


Assuntos
Córnea , Reagentes de Ligações Cruzadas/química , Módulo de Elasticidade , Microscopia de Força Atômica , Riboflavina/química , Raios Ultravioleta , Animais , Córnea/química , Córnea/ultraestrutura , Fármacos Fotossensibilizantes/química , Suínos
19.
Biomaterials ; 35(7): 2130-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24333025

RESUMO

Currently available heart valve replacements are limited in long-term performance or fail due to leaflet thickening, lack of growth or remodeling potential. In order to address these issues, it is necessary to mimic multiple factors of the native valvular extracellular matrix (ECM) such as architecture, mechanical behavior and biochemical signals. Here, we successfully generated an electrospun PEGdma-PLA scaffold adapted to the structure and mechanical properties of native valve leaflets. Valvular interstitial cells (VICs) and valvular endothelial cells (VECs) were seeded on the scaffold and when cultured under physiological conditions in a bioreactor, the construct performed like a native leaflet. Atomic force microscopy (AFM) was employed to obtain detailed mechanical information from the leaflets, which enabled the first layer-specific measurement of the Young's modulus. Interestingly, spongiosa stiffness was much lower compared to the fibrosa and ventricularis. Moreover, investigations into human fetal heart valve development identified collagen type I and versican as important structural proteins. As a proof of principle, these proteins were introduced to the scaffold, demonstrating the ability to bio-functionalize the hybrid valve based on natures' blueprint.


Assuntos
Próteses Valvulares Cardíacas , Engenharia Tecidual , Animais , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Suínos , Tecidos Suporte
20.
Cell Physiol Biochem ; 32(3): 728-42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24080826

RESUMO

BACKGROUND/AIMS: Endothelial cell stiffness plays a key role in endothelium-dependent control of vascular tone and arterial blood pressure. Actin polymerization and distribution of microfilaments is essential for mechanical cell stiffness. Chorein, a protein encoded by the VPS13A gene, defective in chorea-acanthocytosis (ChAc), is involved in neuronal cell survival as well as cortical actin polymerization of erythrocytes and blood platelets. Chorein is expressed in a wide variety of further cells, yet nothing is known about the impact of chorein on cells other than neurons, erythrocytes and platelets. The present study explored whether chorein is expressed in human umbilical vein endothelial cells (HUVECs) and addressed the putative role of chorein in the regulation of cytoskeletal architecture, stiffness and survival of those cells. METHODS: In HUVECs with or without silencing of the VPS13A gene, VPS13A mRNA expression was determined utilizing quantitative RT-PCR, cytoskeletal organization visualized by confocal microscopy, G/F actin ratio and phosphorylation status of focal adhesion kinase quantified by western blotting, cell death determined by flow cytometry, mechanical properties studied by atomic force microscopy (AFM) and cell morphology analysed by scanning ion conductance microscopy (SICM). RESULTS: VPS13A mRNA expression was detectable in HUVECs. Silencing of the VPS13A gene attenuated the filamentous actin network, decreased the ratio of soluble G-actin over filamentous F-actin, reduced cell stiffness and changed cell morphology as compared to HUVECs silenced with negative control siRNA. These effects were paralleled by a significant decrease in FAK phosphorylation following VPS13A silencing. Moreover, silencing of the VPS13A gene increased caspase 3 activity and induced necrosis in HUVECs. CONCLUSIONS: Chorein is a novel regulator of cytoskeletal architecture, cell shape, mechanical stiffness and survival of vascular endothelial cells.


Assuntos
Actinas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Caspase 3/metabolismo , Forma Celular , Citoesqueleto , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Necrose , Fosforilação , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Transporte Vesicular/antagonistas & inibidores , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...